

 [image: _images/django-generic-flatblocks.svg]
 [https://pypi.org/project/django-generic-flatblocks/][image: _images/django-generic-flatblocks1.svg]
 [https://travis-ci.org/bartTC/django-generic-flatblocks][image: _images/606e8ced3f0a48ee8a4b623cd8314b72.svg]
 [https://www.codacy.com/app/bartTC/django-generic-flatblocks][image: _images/606e8ced3f0a48ee8a4b623cd8314b721.svg]
 [https://www.codacy.com/app/bartTC/django-generic-flatblocks]

📖 Full documentation: https://django-generic-flatblocks.readthedocs.io/

django-generic-flatblocks

If you want to add tiny snippets of text to your site, manageable by the admin
backend, you would use either django-chunks [http://code.google.com/p/django-chunks/] or django-flatblocks [http://github.com/zerok/django-flatblocks/tree/master].
However, both of them have one problem: you are limited to a predefined
content field; a “text” field in chunks and a “title” and “text” field in
flatblocks.

django-generic-flatblocks solves this problem as it knows nothing about the
content itself. You attach your hand made content node (a simple model) where
you can define any fields you want.

Contents:

	Installation
	Local Development

	Quickstart

	Detailed usage
	The arguments in detail:
	“unique_slug” (required):

	for “applabel.modelname” (required):

	with “template_path” (optional):

	as “variable name” (optional):

	into “variable_name” (optional):

	Create your own content node

	Contributed content nodes

	Changelog
	v1.3 (2019-03-16):

	v1.2.1 (2018-02-18):

	v1.2 (2018-02-18):

	v1.1.1 (2017-04-30):

	v1.1 (2017-03-18):

	v1.0 (2016-03-23):

	v0.9.1 (2010-03-22):

	v0.9 (2010-02-25):

	v0.4 (2009-09-08):

	v0.3.0 (2009-03-21):

	v0.2.1 (2009-03-20):

	v0.2.0 (2009-03-20):

	v0.1.2 (2009-03-20):

	v0.1.1 (2009-03-15):

	v0.1 (2009-03-13):

Installation

This package is available through the python package index, pypi. You can
install the latest version by:

pip install django-generic-flatblocks

Add the module to your INSTALLED_APPS in your settings:

INSTALLED_APPS = (
 ...
 'django_generic_flatblocks',
 'django_generic_flatblocks.contrib.gblocks', # Optional sample models
)

Make sure that django.core.context_processors.request was added to your
TEMPLATE options:

TEMPLATES = [{
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.request',
 ...

(Optional) Define the url prefix to your contrib.admin installation in the
setting ADMIN_URL_PREFIX. Most commonly this is /admin/. Beware
the trailing slash.

Migrate the database schemas:

./manage.py migrate

See Quickstart for a quick demonstration or Detailed usage for a
detailed integration.

Local Development

Install the package using pipenv:

$ cd django-generic-flatblocks
$ pipenv install --dev
$ pipenv run test

You can run the testsuite against a variety of Python and Django versions with
tox:

$ cd django-generic-flatblocks
$ tox

Quickstart

You can join unlimited of slug-strings or context-variables to one slug. Most
commonly you will do this if you need to use the users LANGUAGE_CODE in your
slug, to have different content nodes for every language:

{% load generic_flatblocks %}
{% gblock "website","title",LANGUAGE_CODE for "gblocks.Title" %}

The slug can also be a context variable:

{% with "website_teaser" as my_slug %}
 {% gblock my_slug for "gblocks.Text" %}
{% endwith %}

You can render each generic block with a template of your choice:

{% gblock "website_urgent_notice" for "gblocks.Text" with "urgent.html" %}

You can pass an integer as slug. In this case, generic-flatblocks
will fetch the model instance with the primary key you named in slug.
Basically this is a {% include %} tag on model level:

{% gblock 1 for "auth.user" with "current_user.html" %}

You can store the related object directly in the context using
the “into” argument. This is the quickest way to display any
model. The “for” and “as” arguments are ignored:

{% gblock 1 for "auth.user" into "the_user_object" %}
<p>The first user is {{ the_user_object.username }}!</p>
{% if the_user_object_admin_url %}edit{% endif %}

Let’s create an flatblock with a “as” argument. We publish this
block at the end of this page in a variable called FOOTER:

{% gblock "footer" for "gblocks.Text" as "FOOTER" %}

{{ FOOTER }}

Detailed usage

First of all, in every template you want to use generic-flatblocks, load the
templatetags library:

{% load generic_flatblocks %}

Then define a content node using the gblock templatetag:

{% gblock "unique_slug" for "applabel.modelname" with "render/with/template.html" as "variable" %}

The arguments in detail:

“unique_slug” (required):

The slug argument defines under which
key the content is stored in your database. You can define as many slugs
as you want, just use a comma as separator. You can use context-variables as
well. Examples:

"homepage headline" becomes "homepage_headline"
"homepage","headline" becomes "homepage_headline"
"homepage_title",LANGUAGE_CODE becomes "homepage_title_en" (depends on the users locale code)
"user",user.pk becomes "user_1" (depends on the primary key of the currently logged in user)

You can pass an integer as the slug. This will cause the templatetag to fetch
the model named in for with the primary key you named in slug. Example:

{% gblock 1 for "auth.user" with "path/to/template.html" %}

This will fetch the auth.User with the primary key 1 and renders this model
object with the template “path/to/template.html”. In this case, the
generic_object in None. Basically this is a {% include %} tag on
model level. This can also be a context variable.

for “applabel.modelname” (required):

The for argument defines, what content-node (model) will be used to store
and display the content. The format is appname.modelname. For some
contributed content-nodes see Contributed content nodes below.
This argument can be a context-variable.

with “template_path” (optional):

You can define a template that is used for rendering the content node. If you
do not provide any template, the default template <applabel>/<modelname>/flatblock.html
is used. This argument can be a context-variable.

In this template are all context-variables from the parent template
available plus some extra variables:

	object: This variable is the model-instance for the generic block.

	generic_object: This variable is the model-instance for the generic
content object itself. Mostly you don’t need this.

	admin_url: A URL to the change view of the current object. This variable
is None if the current user has no change permissions for the object.

as “variable name” (optional):

If you provide a variable name, the rendered content node is stored in it.
Otherwise it’s displayed directly. This argument can be a context-variable.

into “variable_name” (optional):

If you provide a variable name, the related object is stored in it. No
template rendering is done. The with and the as arguments are ignored.
This argument can be a context-variable.

After calling the gblock templatetag, you have the same variables available
as in the with template:

	variable_name: This variable is the model-instance for the generic block.

	variable_name + "_genric_object": This variable is the model-instance for
the generic content object itself. Mostly you don’t need this.

	variable_name + "_admin_url": A URL to the change view of the current object.
This variable is None if the current user has no change permissions for
the object.

This is the quickest way to display any model instance or content-node
directly without creating a template:

{% gblock 1 for "auth.User" into "theuser" %}
The first user is {{ theuser.username }}! (edit)

would be rendered as:

The first user is johndoe! (edit)

Note

If you have settings.TEMPLATE_DEBUG set to True and your related object
does not exist, the templatetag will raise a ObjectNotFound exception. It
will fail silently if you set settings.TEMPLATE_DEBUG to False and
return an (empty, not saved) instance of the related model.

Create your own content node

A content node is a simple django-model. No quirks. If you want to use a title
and a textfield as your content-node, define a new model Entry in your
application myproject:

from django.db import models
from django.contrib import admin
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Entry(models.Model):
 title = models.CharField(max_length=255, blank=True)
 content = models.TextField(blank=True)

 def __str__(self):
 return self.title

admin.site.register(Entry)

Important

django-generic-flatblocks creates an empty content-node upon first
request, so make sure each field has either it’s default value or
allow blank=True. Don’t forget to register your Model in the
admin backend, if you want to edit it there.

Then create a template myproject/entry/flatblock.html in your
template directory. This template is the default template to render the
content node, if you do not provide a unique template for it (with
argument).

In this template are all context-variables from the parent template
available plus some extra variables. See arguments/with above for details.

A common template source for the content node would be:

<h1>{{ object.title }}</h1>
{{ object.content|safe }}

{% if admin_url %}edit this{% endif %}

In your templates, create a new content node using the templatetag:

{% gblock "about_me" for "myproject.Entry" %}

For some pre defined nodes see Contributed content nodes

Contributed content nodes

django-generic-flatblocks comes with some very commonly used content-nodes.
They are not installed by default. To do so, insert django_generic_flatblocks.contrib.gblocks
to your INSTALLED_APPS in your settings and resync your database:
./manage.py syncdb.

The contributed content nodes are:

	gblocks.Title: A CharField rendered as a <h2> Tag.

	gblocks.Text: A TextField rendered as html paragraphs. (This is what
django-chunks provides)

	gblocks.Image: A ImageField rendered as Tag.

	gblocks.TitleAndText: A CharField and a TextField. (This is what
django-flatblocks provides)

	gblocks.TitleTextAndImage: A CharField, TextField and ImageField

So if you want to display a title and textfield, use this templatetag for
example:

{% gblock "about_me" for "gblocks.TitleAndText" %}

Changelog

v1.3 (2019-03-16):

	Django 2.1 compatibility and tests.

	Python 3.7 compatibility and tests.

	Pipenv support.

	General code and package cleanup.

v1.2.1 (2018-02-18):

	Python backwards compatbility and coverage improvements.

v1.2 (2018-02-18):

	Django 2.0 compatibility and tests.

v1.1.1 (2017-04-30):

	Django 1.11 compatibility and tests.

v1.1 (2017-03-18):

	Django 1.10 compatibility and tests.

	Python 3.6 compatibility.

	TEMPLATE_DEBUG setting is no longer honored to raise individual
errors, in favor of standard DEBUG.

v1.0 (2016-03-23):

	Code cleanup and update for Django 1.8+. Python3 Support. Better
test integration. Better docs.

v0.9.1 (2010-03-22):

	Django 1.2 compatibility! Fixed a bug where tests did not pass
under Django 1.2. Thanks to Brian Rosner for this.

v0.9 (2010-02-25):

	Fixed a bug where an integer was not allowed as a part of a slug.

v0.4 (2009-09-08):

	Added Danish translation.

	Added better documentation.

	Added unittests.

	If you fetch a not existing “primary key” object the templatetag
will fail silently if settings.TEMPLATE_DEBUG is False.

v0.3.0 (2009-03-21):

	Added the into argument. You can now display any instance directly
without creating and rendering a template.

v0.2.1 (2009-03-20):

	You can now pass a context variable with a integer to fetch a specific
object.

v0.2.0 (2009-03-20):

	Added the ability to pass an integer as slug. This will cause that the
templatetag fetches the specific for model with the primary key named
in slug.

v0.1.2 (2009-03-20):

	Switched from distutils to setuptools. Fixed whitespace.

v0.1.1 (2009-03-15):

	Fixed wrong upload path of a contributed, generic block

v0.1 (2009-03-13):

	Initial release

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 django-generic-flatblocks

 		
 Installation

 		
 Local Development

 		
 Quickstart

 		
 Detailed usage

 		
 The arguments in detail:

 		
 “unique_slug” (required):

 		
 for “applabel.modelname” (required):

 		
 with “template_path” (optional):

 		
 as “variable name” (optional):

 		
 into “variable_name” (optional):

 		
 Create your own content node

 		
 Contributed content nodes

 		
 Changelog

 		
 v1.3 (2019-03-16):

 		
 v1.2.1 (2018-02-18):

 		
 v1.2 (2018-02-18):

 		
 v1.1.1 (2017-04-30):

 		
 v1.1 (2017-03-18):

 		
 v1.0 (2016-03-23):

 		
 v0.9.1 (2010-03-22):

 		
 v0.9 (2010-02-25):

 		
 v0.4 (2009-09-08):

 		
 v0.3.0 (2009-03-21):

 		
 v0.2.1 (2009-03-20):

 		
 v0.2.0 (2009-03-20):

 		
 v0.1.2 (2009-03-20):

 		
 v0.1.1 (2009-03-15):

 		
 v0.1 (2009-03-13):

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

